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Abstract

In 2001 the authors had introduced different L-separation axioms denoted by GTi, i =

0, 1, 2, 3, 4. In this and a subsequent paper, we introduce a notion of completely regular L-

topological spaces depend on the notion of L-numbers presented by S. Gähler and W. Gähler

in 1994. We denote by GT3 1
2
-space (or L-Tychonoff space) the L-topological space which is GT1

and completely regular in this sense. The category L-Tych of GT3 1
2
-spaces is topological over the

category Set of sets, that is, the initial and final lifts and also the initial and final GT3 1
2
-spaces

exist in L-Tych. Moreover, the relation between the GT3 1
2
-spaces, GT4-spaces and GT3-spaces,

goes well. It is also shown here that our completely regular spaces are more general than the com-

pletely regular spaces defined by Hutton in 1975, Katsaras in 1980, and by Kandil and El-Shafee

in 1988. The relation of the GT3 1
2
-spaces with the L-proximity spaces, the L-uniform spaces and

the L-compact spaces will be investigated in part II of this paper. Moreover, the relation between

the GT3 1
2
-spaces and the L-topological groups will be studied in a separate paper.

Keywords: Fuzzy filters; GTi-spaces; completely regular spaces; GT3 1
2
-spaces; L-Tychonoff spaces;

Initial and final lifts; Initial and final L-topological spaces; L-proximity spaces; L-uniform spaces;

L-compact spaces; L-topological groups.

Introduction

There is a notion of L- real numbers introduced by S. Gähler and W. Gähler in [10],

and defined as a convex, normal, compactly supported and upper semi-continuous

L-subsets of the set of real numbers R. The set of all L-real numbers is called
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L-L-real line and is denoted by RL, where L is a complete chain.

In this paper, using the space (IL,=), where I = [0, 1] is the closed unit interval

and = is the L-topology on IL, a notion of completely regular L-topological spaces

is introduced. This completely regular L-topological space is defined, as in case of

GTi-spaces, i = 0, 1, 2, 3, 4, using the ordinary points and usual subsets. The L-

topological space which is GT1 and completely regular in our sense will be denoted

here by GT3 1
2
-space (or L-Tychonoff space) and the category of all GT3 1

2
-spaces will

be denote by L-Tych. For these GT3 1
2
-spaces, the Urysohn Lemma is proved and

hence it is shown that each GT4-space is a GT3 1
2
-space. Moreover, each GT3 1

2
-space

is a GT3-space. For each case a counter example will be given. It is also shown that

the GT3 1
2
-space is an extension with respect to the functor ω, defined by Lowen in

[23], from the category Tych of T3 1
2
-spaces to the category L-Tych.

The category L-Tych is topological over the category Set of sets ([1]). This

means that the initial and the final of a family of GT3 1
2
-spaces also are GT3 1

2
-

spaces. As special initial and final L- topological spaces, the subspace, the product

space, the quotient space and the sum space of GT3 1
2
-spaces are GT3 1

2
-spaces.

There are several notions of completely regular L-topological spaces such as

the notions defined by Hutton in [16], by Katsaras in [20] and by Kandil and El-

Shafee in [17]. In the last section, it is shown that our notion of completely regular

L-topological spaces is more general than these notions ([16, 17, 20]). Counter

examples are given to show these generalizations.

1. Preliminaries

Throughout the paper let L be a complete chain with different least and last elements

0 and 1, respectively. Let L0 = L \ {0}, L1 = L \ {1} and I01 = I \ {0, 1}, where I

is the closed unit interval. LX and P (X) denote the sets of all L-subsets, that is all

mappings f : X → L, and of all ordinary subsets of X, respectively. Assume that

an order-reversing involution α 7→ α′ of L is fixed. For each L-set f ∈ LX , let f ′
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denote the complement of f , defined by f ′(x) = f(x)′ for all x ∈ X. supf denotes

the supremum of values of f . For all f, g ∈ LX , f is called quasi-coincident with

g, denoted by f q g, if f 6≤ g′. Denote by q the not quasi-coincident, that is, f q g

means f ≤ g′. For each x ∈ X and α ∈ L0, let xα denote an L-point in X. For each

α ∈ L, the constant L-subset of X with value α will be denoted by α. For each L-set

f ∈ LX , and α ∈ L let sαf = {x ∈ X | f(x) > α} and wαf = {x ∈ X | f(x) ≥ α}
be the strong α-cut and the weak α-cut of f , respectively ([22]).

L-topological spaces. In the following the L-topology τ on a set X in sense of

[7, 15] will be used. τ is called stratified if α ∈ τ for all α ∈ L. Let τ ′ denote the set

of all closed L-sets in (X, τ). Denote by intτf and clτf the interior and the closure

of an L-subset f of X with respect to τ , respectively. Let (X, τ) and (Y, σ) be two

L-topological spaces. Then the mapping f : (X, τ) → (Y, σ) is called L-continuous

(or (τ, σ)-continuous) provided intσg ◦ f ≤ intτ (g ◦ f) for all g ∈ LY . If T is an

ordinary topology on X, then the induced L-topology ([23]) on X is given by.

ω(T ) = {f ∈ LX | sαf ∈ T for all α ∈ L1}.

Initial and final L-topological spaces. Consider a family of L-topological

spaces ((Xi, τi))i∈I . Let
∨
i∈I

f−1
i (τi) be the supremum of the family (f−1

i (τi))i∈I , where

for each i ∈ I, f−1
i (τi) = {f−1

i (g) | g ∈ τi} and fi is a mapping of a set X into sets

Xi. Moreover, let
∧
i∈I

fi(τi) be the infimum
∧
i∈I

fi(τi) of the family (fi(τi))i∈I , where

fi(τi) = {g ∈ LX | f−1
i (g) ∈ τi} and fi is a mapping of Xi into X. Of course these

supremun and infimum are taken with respect to the finer relation on L-topologies.
∨
i∈I

f−1
i (τi) and

∧
i∈I

fi(τi) fulfill the following result.

Proposition 1.1 [5, 22]
∨
i∈I

f−1
i (τi) and

∧
i∈I

fi(τi) are the initial and the final of

(τi)i∈I with respect to (fi)i∈I , respectively.

It is known that, the initial (final) L-topology of (τi)i∈I with respect to (fi)i∈I is the

L-topology τ on X which provides an initial (a final) lift in the category L-Top of

L-topological spaces. That is, all mappings fi : (X, τ) → (Xi, τi) (fi : (Xi, τi) →
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(X, τ)) are L-continuous and for any L-topological space (Y, σ) and mapping f :

Y → X (f : X → Y ), f : (Y, σ) → (X, τ) (f : (X, τ) → (Y, σ)) is L-continuous if and

only if for all i ∈ I the mappings fi ◦ f : (Y, σ) → (Xi, τi) (f ◦ fi : (Xi, τi) → (Y, σ))

are L-continuous ([1, 5]).

L-filters. By an L-filter on X ([9, 11]) is meant a mapping M : LX → L such

that the following conditions are fulfilled.

(F1) M(α) ≤ α holds for all α ∈ L and M(1) = 1.

(F2) M(f ∧ g) = M(f) ∧M(g) for all f, g ∈ LX .

An L-filter M is called homogeneous if M(α) = α for all α ∈ L. For each x ∈ X,

the mapping ẋ : LX → L defined by ẋ(f) = f(x) for all f ∈ LX is a homogeneous

L-filter on X. For L-filters M and N on X, M is said to be finer than N , denoted

by, M ≤ N , provided M(f) ≥ N (f) holds for all f ∈ LX . By M 6≤ N we denote

that M is not finer than N . For all L-filters M,N ,L on X, we have ([2])

L ≥M 6≤ N implies L 6≤ N . (1.1)

For each non-empty set A of L-filters on X, the supremum
∨

M∈A
M with respect to

the finer relation of L-filters exists and we have

(
∨

M∈A

M)(f) =
∧

M∈A

M(f)

for all f ∈ LX ([9]). The infimum
∧

M∈A
M doesn’t exist in general, and the following

proposition gives the condition of the existence of this infimum.

Proposition 1.2 [9] For any set A of L-filters on X the infimum
∧

M∈A
M of A

exists if and only if for each non-empty finite subset {M1, . . . ,Mn} of A we have

M1(f1) ∧ · · · ∧Mn(fn) ≤ sup(f1 ∧ · · · ∧ fn) for all f1, . . . , fn ∈ LX . If the infimum

of A exists, then for each f ∈ LX and n as a positive integer we have:

(
∧

M∈A

M)(f) =
∨

f1∧···∧fn≤f,
M1,...,Mn∈A

(M1(f1) ∧ · · · ∧Mn(fn)).
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L-neighborhood filters. For each L-topological space (X, τ) and each x ∈ X

the L-filter N (x) on X, defined by N (x)(f) = intτf(x) for all f ∈ LX , is called the

L-neighborhood filter of the space (X, τ) at x, We may note that ẋ ≤ N (x) holds

for all x ∈ X ([12]). The L-neighborhood filter N (F ) at an ordinary subset F of

X is the L-filter on X defined, by the authors in [3], by means of N (x), x ∈ F

as: N (F ) =
∨

x∈F
N (x). Moreover, the L-filter Ḟ is defined by Ḟ =

∨
x∈F

ẋ and we

have Ḟ ≤ N (F ) holds for all F ∈ P (X). Recall also here the L-filter ġ and the

L-neighborhood filter N (g) at an L-subset g of X defined by ([6])

ġ(f) = (
∨

0<g(x)

ẋ) (f) and N (g)(f) = (
∨

0<g(x)

N (x)) (f), (1.2)

respectively, for all f ∈ LX . We have ġ ≤ N (g) holds for all g ∈ LX .

GTi-spaces. In [2, 3] we had defined the L-separation axioms GTi, i = 0, 1, 2, 3, 4,

and in the following we recall some of these axioms which are needed in this paper.

An L-topological space (X, τ) is called:

(1) GT0 if for all x, y ∈ X with x 6= y we have ẋ 6≤ N (y) or ẏ 6≤ N (x).

(2) GT1 if for all x, y ∈ X with x 6= y we have ẋ 6≤ N (y) and ẏ 6≤ N (x).

(3) GT2 if for all x, y ∈ X with x 6= y we have N (x) ∧N (y) does not exist.

(4) regular if N (x) ∧ N (F ) does not exist for all x ∈ X,F ∈ P (X) with F ∈ τ ′

and x 6∈ F .

(5) GT3 if it is regular and GT1.

(6) normal if for all F1, F2 ∈ P (X) with F1, F2 ∈ τ ′ and F1 ∩ F2 = ∅ we have

N (F1) ∧N (F2) does not exist.

(7) GT4 if it is normal and GT1.

Denote by GTi-space the L-topological space which is GTi.

Proposition 1.3 [2, 3] We have the following results:
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(1) Every GTi-space is GTi−1-space for each i = 1, 2, 3, 4.

(2) The initial and final L-topological spaces of a family of GTi-spaces are GTi-

spaces for each i = 0, 1, 2, 3, 4.

(3) The L-topological subspace and the L-topological product space of a family of

GTi-spaces are GTi-spaces for each i = 0, 1, 2, 3, 4.

In [4] we had studied the relation of GTi-spaces with other notions of L-separation

axioms, and in [6] we had studied also the relation of GTi-spaces with the L-

proximity spaces defined in [19], the G-compact spaces defined in [12] and the

L-uniform spaces defined in [14].

L-real numbers. The GT3 1
2
-spaces will be defined in Section 2 using the

Gähler’s L-unit interval IL. By Gähler’s L-unit interval ([10]) is meant the set

IL defined by

IL = {x ∈ R∗
L | x ≤ 1∼},

where I = [0, 1] is the real unit interval and R∗
L = R∗

L = {x ∈ RL | x(0) =

1 and 0∼ ≤ x} is the set of all positive L-real numbers. Note that here, by ≤ we

mean the binary operation on RL defined by

x ≤ y ⇔ xα1 ≤ yα1 and xα2 ≤ yα2

for all x, y ∈ RL where xα1 = inf{z ∈ R | x(z) ≥ α} and xα2 = sup{z ∈ R | x(z) ≥
α} for all x ∈ RL and for all α ∈ L0. The class

{Rδ|IL
| δ ∈ I } ∪ {Rδ|IL

| δ ∈ I } ∪ { 0∼|IL
}

is a base for an L-topology = on IL, where Rδ and Rδ are the L-subsets of RL

defined by Rδ(x) =
∨

α>δ
x(α) and Rδ(x) = (

∨
α≥δ

x(α))′ for all x ∈ RL and δ ∈ R

and note that Rδ|IL
, Rδ|IL

are the restrictions of Rδ, Rδ on IL, respectively. Recall

that:

Rδ(x) ∧Rη(y) ≤ Rδ+η(x + y), (1.3)
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where x + y is an L-real number defined by (x + y)(ξ) =
∨

η, ζ∈R , η+ζ=ξ

(x(η) ∧ y(ζ))

for all ξ ∈ R.

2. GT31
2
-spaces

Now, we shall introduce our notion of completely regular spaces in the L-case.

Definition 2.1 An L-topological space (X, τ) is said to be completely regular if for

all x ∈ X, F ∈ P (X) with F ∈ τ ′ and x 6∈ F , there exists an L-continuous mapping

f : (X, τ) → (IL,=) such that f(x) = 1 and f(y) = 0 for all y ∈ F .

Definition 2.2 An L-topological space (X, τ) is called a GT3 1
2
-space (or an L-

Tychonoff space) if it is GT1 and completely regular.

In the next theorem we introduce an equivalent definition for our L-completely

regular spaces.

Theorem 2.1 Let (X, τ) be an L-topological space, B a subbase for τ and let B′ be

the set of the complements of elements of B. Then (X, τ) is completely regular if

and only if for all G ∈ B′ and x ∈ X, x 6∈ G implies there exists an L-continuous

mapping f : (X, τ) → (IL,=) such that f(x) = 1 and f(y) = 0 for all y ∈ G.

Proof. It is obvious that if the space (X, τ) is completely regular, then the condition

is satisfied.

Now, let the condition be fulfilled and let x ∈ X, F ∈ P (X) with F ∈ τ ′

and x 6∈ F . Then x ∈ F ′ ∈ τ and then there are B1, . . . , Bn ∈ B such that

x ∈ (B1 ∩ · · · ∩Bn) ⊆ F ′ and then x ∈ Bi for all i = 1, . . . , n. That is, x 6∈ B′
i for all

i = 1, . . . , n, and then there exists an L-continuous mapping fi : (X, τ) → (IL,=)

such that fi(x) = 1 and fi(y) = 0 for all y ∈ B′
i and for all i = 1, . . . , n, which is also

true for all y ∈ (B′
1∪· · ·∪B′

n), and this means, in particular, fi(x) = 1 and fi(y) = 0

for all y ∈ F , for all i = 1, . . . , n. Taking any one of the mappings fi : X → IL,
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gives us the required L-continuous mapping g : (X, τ) → (IL,=) for which g(x) = 1

and g(y) = 0 for all y ∈ F . Thus, (X, τ) is a completely regular space. 2

Now, we have an example of GT3 1
2
-spaces.

Example 2.1 Let X = {x, y} with x 6= y and let τ = {0, 1, x1, y1}. Then τ ′ =

{0, 1, x1, y1} and there are only the cases of x 6∈ {y} ∈ τ ′ and y 6∈ {x} ∈ τ ′ to be

studied. We shall consider the first case and the second is similar.

Since the mapping f : (X, τ) → (IL,=) defined by f(x) = 1 and f(y) = 0 is

L-continuous and satisfies the condition of (X, τ) to be a completely regular space

and also of being a GT1-space, then (X, τ) is a GT3 1
2
-space.

The following proposition and example show that the class of GT3-spaces is larger

than the class of GT3 1
2
-spaces.

Proposition 2.1 Every GT3 1
2
-space is a GT3-space.

Proof. Let (X, τ) be GT3 1
2
-space and let x 6∈ F and F ∈ τ ′. That is, the space

(X, τ) is GT1 and completely regular. (X, τ) is completely regular implies there

exists an L-continuous mapping f : (X, τ) → (IL,=) such that f(x) = 1 and

f(y) = 0 for all y ∈ F . For R 1
2
, R

1
2 ∈ =, we have (R 1

2
◦f)(x) = R 1

2
(1) =

∨
α> 1

2

1(α) = 1

and (R
1
2 ◦f)(y) = R

1
2 (0) = (

∨
α≥ 1

2

0(α))′ = 1 for all y ∈ F , and then f is L-continuous

implies there are h = R 1
2
◦ f , k = R

1
2 ◦ f in LX such that N (x)(h) ∧N (F )(k) = 1.

From that
∧
s<t

f(z) (s) ≥ ∨
r>t

f(z) (r) for all z ∈ X in general, we get for all z ∈ X

that:

(h ∧ k)(z) = ((R 1
2
◦ f) ∧ (R

1
2 ◦ f))(z)

=
∨

α> 1
2

f(z)(α) ∧ (
∨

α≥ 1
2

f(z)(α))′

≤ ∧

α< 1
2

f(z)(α) ∧ ∧

α≥ 1
2

f(z)(α)′

< 1.
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Hence, sup(h ∧ k) < N (x)(k) ∧ ∧
y∈F

N (y)(h) and therefore (X, τ) is a regular space

and consequently it is a GT3-space. 2

In this example we introduce a GT3-space which is not GT3 1
2
-space.

Example 2.2 Let X = {x, y} with x 6= y and let τ = {0, 1, y 1
2
, y1, x 3

4
∨y 1

2
, x 3

4
∨y1}.

Then τ ′ = {0, 1, x 1
4
, x1, x 1

4
∨ y 1

2
, x1 ∨ y 1

2
} and there is only the case of y 6∈ {x} ∈ τ ′

to be studied. Since f = x 3
4
∨ y 1

2
and g = y1 in LX implies

N (x)(f) ∧N (y)(g) = intτf(x) ∧ intτg(y) =
3

4
>

1

2
= sup(f ∧ g),

then N (x) ∧ N (y) does not exist and hence (X, τ) is a regular space and it is also

a GT1-space. Thus (X, τ) is a GT3-space.

Since in case of y 6∈ {x} ∈ τ ′ we get that any mapping f : (X, τ) → (IL,=)

such that f(y) = 1 and f(x) = 0 is not L-continuous, then (X, τ) is not completely

regular and thus it is not a GT3 1
2
-space.

L-topogenous orders. A binary relation¿ on LX is said to be an L-topogenous

order on X ([21]) if the following conditions are fulfilled:

(1) 0 ¿ 0 and 1 ¿ 1,

(2) f ¿ g implies f ≤ g,

(3) f1 ≤ f ¿ g ≤ g1 implies f1 ¿ g1 and

(4) from f1 ¿ g1 and f2 ¿ g2 it follows f1 ∨ f2 ¿ g1 ∨ g2 and f1 ∧ f2 ¿ g1 ∧ g2.

An L-topogenous order ¿ is said to be regular or is said to be an L-topogenous

structure if for all f, g ∈ LX with f ¿ g there is a k ∈ LX such that f ¿ k and

k ¿ g hold.

An L-topogenous structure ¿ is called complementarily symmetric if f ¿ g

implies g′ ¿ f ′ for all f, g ∈ LX .
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Let X 6= ∅ be an arbitrary set. By an L-function family Φ on X, we mean the

set of all L-real functions f : X → IL.

Let f and g be L-sets in X. Then a function h : X → IL is said to separate f

and g if 0 ≤ h(x) ≤ 1 for all x ∈ X, x1 ≤ f implies h(x) = 1 and y1 ≤ g implies

h(y) = 0. Moreover, if Φ is an L-function family on X, then the sets f, g ∈ LX are

called Φ-separated or Φ-separable if there exists a function h ∈ Φ separating them.

L-proximities. A binary relation δ on LX is called an L-L-proximity (or an

L-proximity) ([13, 19]) on X provided it fulfills the following conditions:

(P1) f δ g implies g δ f , where δ means (LX × LX) \ δ, called the negation of δ.

(P2) (f ∨ g) δ h if and only if f δ h and g δ h.

(P3) f = 0 or g = 0 implies f δ g for all f, g ∈ LX .

(P4) f δ g implies f ≤ g′.

(P5) If f δ g, then there is an h ∈ LX such that f δ h and h′ δ g.

(X, δ) is called an L-proximity space. The L-proximity δ on a set X is associated

with an L-topology τδ. The related interior and closure operators intδ and clδ are

given by:

intδ f =
∨

f ′ δ g

g, and clδ f =
∧

g′ δ f

g

respectively, for all f ∈ LX . An L-set f in LX is called a τδ-neighborhood of x ∈ X

if x1 δ f ′. A mapping f between L-proximity spaces (X, δ) and (Y, ρ) is called L-

proximally continuous (or (δ, ρ)-continuous) provided g ρ h implies (g ◦ f) δ (h ◦ f)

for all g, h ∈ LY .

Proposition 2.2 [13, 21] There is an identification between the L- proximity δ on

X and the complementarily symmetric L-topogenous structure ¿ on X given by

f ¿ g′ ⇔ f δ g (2.1)

for all f, g ∈ LX .
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Let (¿n) be a sequence of L-topogenous structures on X and (≺n) a sequence

of L-topogenous structures on IL. Then an L-real function f : X → IL is said to be

associated with the sequence (¿n) if for all g, h ∈ LIL , g ≺n h implies (g ◦ f) ¿n+1

(h ◦ f) for every positive integer n.

Remark 2.1 Consider (¿n) and (≺n) are two sequences of two complementarily

symmetric L-topogenous structures ¿ and ≺ on X and IL, respectively. Let δ and

δ∗ be the L-proximities on X and IL identified with ¿ and ≺ by (2.1), respectively.

Then for a function f : X → IL associated with the sequence ¿, we get from

(2.1) that g δ∗ h implies (g ◦ f) δ (h ◦ f) for all g, h ∈ LIL , which means that f is

L-proximally continuous.

Here, to prove the Urysohn’s Lemma for our notion of GT3 1
2
-spaces, we need the

following results.

In the proof of the following lemma we use the way of Császár ([8]).

Lemma 2.1 Suppose that ¿n (n = 0, 1, 2, . . .) are complementarily symmetric L-

topogenous structures on a set X. If F, G ∈ P (X) and χF ¿0 χG, then there exists

a function f : X → IL associated with the sequence (¿n) for which f(x) = 0 for all

x ∈ F and f(y) = 1 for all y ∈ G′.

Proof. Since (¿n) is a sequence of binary relations in the crisp case and fulfill the

conditions of being complementarily symmetric L-topogenous structures, then we

can deduce that there is a recursion process in the crisp case similar to that in the

usual case in [8] by defining the order relation ¿m for m ∈ R where R denotes the

set of all non-negative dyadic rational numbers (m = p
2n ; p = 0, . . . , 2n, n = 0, 1, . . .).

With this relation, the sets A(m) can be associated such that

(1) A(0) = F , A(1) = G;

(2) A( p
2n ) ¿m A(p+1

2n ), A(r) = X for all r > 1; p = 0, . . . , 2n, n = 0, 1, . . . .
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From the properties of ¿n we get A(r) ⊆ A(s) for all r, s ∈ R, r < s.

Define the L-real function f : X → IL by f(x) =
∧

r∈R
{r | x ∈ A(r)}, then

f(x) = 0 for all x ∈ F and f(y) = 1 for all y ∈ G′.

Now, as in the usual case, f itself is an associated function with the sequence

(¿n) and also f separates the sets χF and χG′ . Hence the proof is complete. 2

Proposition 2.3 [13] If f : (X, δ) → (Y, ρ) is L-proximally continuous, then f :

(X, τδ) → (Y, τρ) is (τδ, τρ)-continuous.

Proposition 2.4 [6] If (X, τ) is a normal L-topological space, then the binary re-

lation δ on LX defined by

f δ g ⇐⇒ N (clτ f) ≤ ˙(clτ g)′ (2.2)

is an L-proximity on X. Conversely, in an L-proximity space (X, δ) with δ fulfills

(2.2), the L-topological space (X, τδ) is normal.

From (2.1), Lemma 2.1 and Remark 2.1 we can easily deduce the following.

Proposition 2.5 Let F and G be subsets of X with χF δ χG in the L-proximity

space (X, δ) and let Φ be the family of those L-proximally continuous functions h of

(X, δ) into the L-proximity space (IL, δ∗) for which x ∈ X implies 0 ≤ h(x) ≤ 1.

Then χF and χG are Φ-separable.

Proof. Let ¿ be the complementarily symmetric L-topogenous structure identified

with δ. From (2.1), χF δ χG implies that χF ¿ χ′G and since h ∈ Φ is L-proximally

continuous, then h, by means of Remark 2.1, is associated with ¿. Hence, Lemma

2.1 implies that χF and χG are separated by h, that is, χF and χG are Φ-separable.

2

We shall use the following results in the proof of the next proposition.
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Lemma 2.2 [6] For all f, g ∈ LX , we have

f ≤ g if and only if ḟ ≤ ġ.

Proposition 2.6 [3] The L-topological space (X, τ) is GT1 if and only if cl ẋ = ẋ,

that is, clτ{x} = {x}, that is, clτx1 = x1 for all x ∈ X.

The L-proximity induced in Proposition 2.4 is also compatible with the GT4-

topologies. We shall prove now the following important result.

Proposition 2.7 Let (X, τ) be a normal L-topological space and δ the L-proximity

on X defined by (2.2). Then τδ is coarser than τ . The equality τ = τδ holds if and

only if the space (X, τ) is a GT4-space.

Proof. Let (X, τ) be a normal space. If f is a τδ-neighborhood of x, then x1 δ f ′.

Hence, from (2.2) we have N (clτx1) ≤ ˙(clτf ′)′, and therefore

ẋ ≤ N (x) ≤ N (clτ{x}) = N (clτx1) ≤ ˙(clτf ′)′ ≤ ḟ .

From Lemma 2.2 we get that x1 ≤ (clτf
′)′ ≤ f and (clτf

′)′ ∈ τ . Hence, f is a

τ -neighborhood of x. Thus τδ is coarser than τ , that is, τδ ⊆ τ .

Now, let (X, τ) be a GT4-space and let Nτ (x) and Nτδ
(x) denote for the L-

neighborhood filters at x of the spaces (X, τ) and (X, τδ), respectively. Then (X, τ)

is normal and a GT1-space and hence τδ ⊆ τ and Nτ (x) 6≤ ẏ for all y 6= x in X. From

that τδ ⊆ τ implies Nτ (x) ≤ Nτδ
(x) for all x in X, we get that Nτδ

(x) ≥ Nτ (x) 6≤ ẏ

for all y 6= x in X. Hence from (1.1), we have Nτδ
(x) 6≤ ẏ for all y 6= x in X and

thus (X, τδ) is also a GT1-space. Thus from Proposition 2.6 we get that x1 ∈ τ ′δ for

all x ∈ X. If f is a τ -neighborhood of x, then f ′ ≤ x′1 and since x′1 ∈ τδ, then x′1 is a

τδ-neighborhood of every y ∈ X with y1 ≤ f ′. This means that f ′ δ x1 which implies

that f is a τδ-neighborhood of x. Hence, τ ⊆ τδ and thus (X, τ) is a GT4-space

implies that τ = τδ.
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Conversely; let τ = τδ and x ∈ X, and let f be a τ -neighborhood of x. Then

f ∈ τδ and x1 ≤ f , which means that

˙(clτx1) ≤ N (clτx1) ≤ ˙(clτf ′)′ ≤ ḟ ,

and this means from Lemma 2.2 that clτx1 ≤ f . Hence, x1 ≤ f implies clτx1 ≤ f ,

and then clτx1 ≤ x1 for all x ∈ X. Thus, clτx1 = x1 for all x ∈ X and (X, τ) is a

GT1-space. Since (X, τ = τδ), by means of Proposition 2.4, is a normal space, then

(X, τ) is a GT4-space. 2

In a strictly speaking we can easily find out the Urysohn’s Lemma as follows.

Lemma 2.3 (Urysohn’s Lemma) Let (X, τ) be an L-topological space. Then

(X, τ) is normal if and only if for all F, G ∈ P (X) with F, G are disjoint closed

sets in X, there exists an L-continuous function f : (X, τ) → (IL,=) such that

f(x) = 0 for all x ∈ F and f(y) = 1 for all y ∈ G.

Proof. Let (X, τ) be a normal L-topological space. Then the infimum N (F ) ∧
N (G) does not exist for all F,G ∈ P (X) with F, G are disjoint closed sets in

X and hence N (F ) ≤ Ġ′. Thus if δ is the L-proximity on X defined by (2.2),

then we have χF δ χG. By Proposition 2.5 an L-proximally continuous function

f : (X, δ) → (IL, δ∗) exists and separates F and G, where δ∗ is an L-proximity

on IL. From Proposition 2.3, we get that f is a (τδ,=δ∗)-continuous function, and

from Proposition 2.7, we have τδ ⊆ τ and then f is a (τ,=)-continuous function and

f(x) = 0 for all x ∈ F and f(y) = 1 for all y ∈ G.

Conversely; If there exists an L-continuous function f : (X, τ) → (IL,=) such

that f(x) = 0 for all x ∈ F and f(y) = 1 for all y ∈ G for all F, G ∈ P (X) with

F,G are disjoint closed sets in X and then, when we consider the sets R 1
2

and R
1
2

are restricted on IL, we get that the two L-sets g = R
1
2 ◦ f and h = R 1

2
◦ f are open

L-sets such that

N (F )(g) =
∧

x∈F

g(x) =
∧

x∈F

R
1
2 (f(x)) =

∧

x∈F

(
∨

α≥ 1
2

f(x)(α))′ = 1
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and

N (G)(h) =
∧

y∈G

h(y) =
∧

y∈G

R 1
2
(f(y)) =

∧

y∈G

∨

α> 1
2

f(y)(α) = 1.

That is, N (F )(g) ∧N (G)(h) = 1. Since

(g ∧ h)(z) =
∨

α> 1
2

f(z)(α) ∧ (
∨

α≥ 1
2

f(x)(α))′ ≤ ∧

α< 1
2

f(z)(α) ∧ ∧

α≥ 1
2

f(x)(α)′ < 1

for all z ∈ X, then N (F ) ∧ N (G) does not exist and therefore (X, τ) is a normal

space. 2

To prove that the GT3 1
2
-spaces are more general than the GT4-spaces we need

the following result.

Proposition 2.8 Every GT4-space is a GT3 1
2
-space.

Proof. Let (X, τ) be a GT4-space and let x 6∈ F and F ∈ τ ′. Then (X, τ) is

a GT1-space and hence from Proposition 2.6, we have {x}, F are disjoint closed

subsets of X and then, by Urysohn’s Lemma, there exists an L-continuous mapping

f : (X, τ) → (IL,=) such that f(x) = 1 and f(y) = 0 for all y ∈ F . Hence, (X, τ)

is a GT3 1
2
-space. 2

We have the following example for a GT3 1
2
-space which is not a GT4-space.

Example 2.3 Let (X, τ) be the L-topological space defined as the Moore Space.

That is, X is the closed upper half plane {(x, y) | y ≥ 0} in R2 and τ is defined

as follows: For each point in the open upper half plane, {(x, y) | y > 0}, the basic

L-neighborhoods will be the usual open disks, and at the points z on the X-axis,

the basic L-neighborhoods will be the sets {z} ∪ A, where A is an open disk in the

open upper half plane and tangent to the x-axis at z.

As in the classical case, since there are two disjoint closed sets A = {(r, 0) |
r ∈ Q} and B = {(s, 0) | s ∈ Q′} for which they have no disjoint L-neighborhoods,

where Q and Q′ denote for the rational and the irrational numbers, respectively, then

we get that (X, τ) is GT1 and it is not normal. That is, (X, τ) is not a GT4-space.

15



Now, let p ∈ X and V a basic open neighborhood of p (so that V is either an

open disk centered at p or else p together with an open disk tangent to p, depending

on the placement of p). Define f : (X, τ) → (IL,=) by f(p) = 1 and f(x) = 0 for

all x 6∈ V , and defining f linearly along the straight line segments between p and

the points on the boundary of V . Then f is an L-continuous mapping on X such

that f(p) = 1 and f(x) = 0 for all x ∈ V ′. Since any closed set in X which does not

contain p is contained in U ′ for some basic L-neighborhood U of p, it follows that

(X, τ) is completely regular and thus it is a GT3 1
2
-space.

L-metric spaces. In the sequel will be shown that the L-metric space in sense

of S. Gähler and W. Gähler, which had been introduced in [10], is an example of our

GT3 1
2
-space. By an L-metric on a set X we mean ([10]) a mapping % : X×X −→ R∗

L

such that the following conditions are fulfilled:

(1) %(x, y) = 0∼ if and only if x = y

(2) %(x, y) = %(y, x) (symmetry)

(3) %(x, y) ≤ %(x, z) + %(z, y) (triangle inequality).

A set X equipped with an L-metric % on X is called an L-metric space.

Note that 0∼ denotes the L-number which has values 1 at 0 and 0 otherwise.

To each L-metric % on a set X is generated canonically a stratified L-topology τ%

which has {ε ◦ %x | ε ∈ E , x ∈ X} as a base, where %x : X → R∗
L is the mapping

defined by %x(y) = %(x, y) and

E = {α ∧Rδ|R∗
L
| δ > 0, α ∈ L } ∪ {α | α ∈ L },

here α has R∗
L as domain and Rδ|R∗

L
is the restriction of Rδ on R∗

L.

In the following proposition we shall prove that every L-metric space in sense of

S. Gähler and W. Gähler ([10]) is a GT4-space.
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Proposition 2.9 Any L-metric space (X, τ%) is a GT4-space.

Proof. Let F and G be two disjoint closed subsets of (X, τ%). Then for all x ∈ F

and y ∈ G we get %(x, y) 6= 0̃, that is, there exists δ > 0 such that %(x, y)(2δ) > 0

and then R2δ|R∗
L
(%(x, y)) = (

∨
α≥2δ

%(x, y)(α))′ < 1.

Let f = Rδ|R∗
L
◦ %x and g = Rδ|R∗

L
◦ %y. Then

f(x) = Rδ|R∗
L
(%x(x)) = Rδ|R∗

L
(0̃) = (

∨

α≥δ

0̃(α))′ = 1 for all x ∈ F,

and

g(y) = Rδ|R∗
L
(%y(y)) = Rδ|R∗

L
(0̃) = (

∨

α≥δ

0̃(α))′ = 1 for all y ∈ G.

That is, f and g are open L-neighborhoods in τ% at all x ∈ F and all y ∈ G,

respectively, which means
∧

x∈F
N (x)(f) ∧ ∧

y∈G
N (y)(g) = 1. From the symmetry and

the triangle inequality of % and from (1.3) we get Rδ|R∗
L
(%(x, z))∧Rδ|R∗

L
(%(y, z)) ≤

R2δ|R∗
L
(%(x, y)) < 1 and hence (f ∧ g)(z) = (Rδ|R∗

L
◦ %x)(z) ∧ (Rδ|R∗

L
◦ %y)(z) < 1

for all z ∈ X and hence sup(f ∧ g) < 1. Therefore, the space (X, τ%) is normal and

it is clear that (X, τ%) is a GT1-space. Thus, (X, τ%) is a GT4-space. 2

Example 2.4 From Propositions 2.8 and 2.9 we get that the L-metric space in

sense of S. Gähler and W. Gähler [10] is an example of our notion of GT3 1
2
-space

and thus it is also an example of all our GTi-spaces, i = 0, 1, 2, 3, 4.

A topological space (X,T ) is called T1 if for any x 6= y in X, there exist neighbor-

hoods Ox of x such that y 6∈ Ox and Oy of y such that x 6∈ Oy. A topological space

(X,T ) is called completely regular if for all x 6∈ F ∈ T ′, there exists a continuous

mapping f : (X, T ) → (I, TI) such that f(x) = 1 and f(y) = 0 for all y ∈ F , where

TI is the usual topology on the closed unit interval I. A topological space (X, T ) is

called T3 1
2

(or Tychonoff) if it is T1 and completely regular ([8]).

To show that our notion of GT3 1
2
-space is an extension with respect to the functor

ω in sense of Lowen ([23]), we need the following proposition.
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Proposition 2.10 [2] A topological space (X,T ) is T1 if and only if the induced

L-topological space (X, ω(T )) is GT1.

Proposition 2.11 A topological space (X, T ) is T3 1
2

if and only if the induced L-

topological space (X,ω(T )) is GT3 1
2
.

Proof. By means of Proposition 2.10, we have (X, T ) is a T1-space if and only if

(X,ω(T )) is a GT1-space.

Now, let x 6∈ F and F ∈ ω(T )′ hold. Then, (sαF )′ = sαF ′ ∈ T and hence

x 6∈ sαF ∈ T ′. Since (X, T ) is a completely regular space, then there exists a

continuous mapping g : (X, T ) → (I, TI) such that g(x) = 1, g(y) = 0 for all

y ∈ sαF = F for all α ∈ L1. It is obvious that g : (X,ω(T )) → (I, ω(TI)) is also

L-continuous. Take h : (I, ω(TI)) → (IL,=) defined by h(z) = z for all z ∈ I which

is L-continuous. Then f = h◦g : (X, ω(T )) → (IL,=) is L-continuous and f(x) = 1,

f(y) = 0 for all y ∈ F . Thus, (X, ω(T )) is a completely regular space and therefore

(X,ω(T )) is a GT3 1
2
-space.

Conversely; if (X, ω(T )) is a completely regular space and x 6∈ F, F ∈ T ′,

then x 6∈ χF ∈ ω(T )′ which means that there exists an L-continuous mapping

f : (X, ω(T )) → (IL,=) and f(x) = 1, f(y) = 0 for all y ∈ F . Then from that T =

(ω(T ))α and =α = TI ([18]), there could be found a mapping fα : (X, T ) → (I, TI)

which is continuous and fα(x) = 1, fα(y) = 0 for all y ∈ F , for all α ∈ L1. Hence,

(X,T ) is a completely regular space and then (X, T ) is a T3 1
2
-space. 2

We shall use the following result.

Proposition 2.12 [2] Let (X, τ) be a GT1-space and let σ be an L-topology on X

finer than τ . Then (X, σ) also is a GT1-space.

The following proposition shows that the finer L-topological space of a GT3 1
2
-

space also is a GT3 1
2
-space.
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Proposition 2.13 Let (X, τ) be a GT3 1
2
-space and let σ be an L-topology on X

finer than τ . Then (X, σ) also is a GT3 1
2
-space.

Proof. From Proposition 2.12, we get (X, σ) is a GT1-space. Consider a subbase B
for τ and let x ∈ X, F ∈ σ′ with x 6∈ F . Then there are B1, . . . , Bn ∈ B such that

x ∈ (B1∩· · ·∩Bn) ⊆ F ′. So, x 6∈ B′
i, B′

i ∈ τ ′ for all i = 1, . . . , n. From Theorem 2.1,

we get that there exists an L-continuous mapping fi : (X, τ) → (IL,=) such that

fi(x) = 1 and fi(y) = 0 for all y ∈ B′
i and for all i = 1, . . . , n, which is also true for

all y ∈ (B′
1 ∪ · · · ∪ B′

n), and this means, in particular, that fi(x) = 1 and fi(y) = 0

for all y ∈ F ; for all i = 1, . . . , n. Since τ ⊆ σ, then anyone of these mappings

fi : X → IL, gives us the required L-continuous mapping g : (X, σ) → (IL,=) for

which g(x) = 1 and g(y) = 0 for all y ∈ F . Thus, (X, σ) is a completely regular

space, and therefore it is a GT3 1
2
-space. 2

3. Initial GT3 1
2
-spaces

Denote by L-Tych the category of all GT3 1
2
-spaces (or L-Tychonoff spaces). L-

Tych is a concrete category. We may note that the category L-Tych is a full

subcategory of the category L-Top of L-topological spaces, which is topological

over the category Set, and hence all initial lifts exist uniquely in the category L-

Tych and this means it is topological over Set. That is, all initial GT3 1
2
-spaces

exist in L-Tych.

Proposition 1.1 states that
∨
i∈I

f−1
i (τi) is the initial L-topology of a family (τi)i∈I

of topologies with respect to a family (fi)i∈I of mappings. The initial L-topology

of a family of GT3 1
2
-topologies is precisely the initial GT3 1

2
-topology, this result will

be shown in the following propositions.

At first consider the case of one mapping.

Proposition 3.1 Let f : X → Y be an injective mapping and (Y, σ) a GT3 1
2
-space.

Then the initial L-topological space (X, τ = f−1(σ)), of (Y, σ) with respect to f , also
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is GT3 1
2
-space.

Proof. From (2) in Proposition 1.3 we have that (X, τ) is a GT1-space.

Now, let x 6∈ F and F ∈ τ ′ = (f−1(σ))′ = f−1(σ′). From that f is injective it

follows f(x) 6∈ f(F ) and f(F ) ∈ σ′. Since (Y, σ) is GT3 1
2
-space, then there exists an

L-continuous mapping g : (Y, σ) → (IL,=) such that g(f(x)) = 1 and g(f(y)) = 0

for all y ∈ F . Then g ◦ f : (X, τ) → (IL,=) is L-continuous and thus (X, τ) is

completely regular. Therefore, (X, τ) is a GT3 1
2
-space. 2

Assume now that a family ((Xi, τi))i∈I of GT3 1
2
-spaces and a family (fi)i∈I of

injective mappings fi : X → Xi for some i ∈ I are given, where I may be any class.

Proposition 3.2 The initial L-topological space (X, τ =
∨
i∈I

f−1
i (τi)), of the family

((Xi, τi))i∈I with respect (fi)i∈I , also is GT3 1
2
-space.

Proof. Similarly, as in proof of Proposition 3.1. 2

GT3 1
2
-subspaces and GT3 1

2
-product spaces. The GT3 1

2
-subspaces and the

GT3 1
2
-product spaces, in the categorical sense, are special initial GT3 1

2
-spaces ([1])

and therefore these spaces can be characterized as follows: Let (X, τ) be GT3 1
2
-

space and A a non-empty subset of X and i : A ↪→ X the inclusion mapping, and

let (A, τA) be the subspace of (X, τ), that is, τA be the initial of τ with respect to

i. Then, from Proposition 3.1, (A, τA) is a GT3 1
2
-space. Let X be the cartesian

product
∏
i∈I

Xi of the family (Xi)i∈I and pi : X → Xi be the related projections, and

let for each i ∈ I, (Xi, τi) be a GT3 1
2
-space. Let (X,

∏
i∈I

τi) be the product space of

((Xi, τi))i∈I . That is,
∏
i∈I

τi is the initial of (τi)i∈I with respect to (pi)i∈I and hence,

by means of Proposition 3.2, we get that (X,
∏
i∈I

τi) is a GT3 1
2
-space.

We summarize the last dissection in the following corollary.

Corollary 3.1 The L-topological subspaces and the L-topological product spaces of

a family of GT3 1
2
-spaces also are GT3 1

2
-spaces.
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4. Final GT3 1
2
-spaces

Since the category L-Tych is topological, then all final GT3 1
2
-spaces also exist ([1]).

By means of Proposition 1.1,
∧
i∈I

fi(τi) is the final L-topology of a family (τi)i∈I of

topologies with respect to a family (fi)i∈I of mappings. The following propositions

show that the final L-topology of a family of GT3 1
2
-topologies is a GT3 1

2
-topology.

In case of one mapping we get this result.

Proposition 4.1 Let f : X → Y be a surjective L-open mapping and (X, τ) a

GT3 1
2
-space. Then the final L-topological space (Y, σ = f(τ)), of (X, τ) with respect

to f , also is GT3 1
2
-space.

Proof. Let y 6∈ H and H ∈ (f(τ))′ ⊆ f(τ ′) hold. From that f is surjective, it follows

that there exists x 6∈ F, F ∈ τ ′, where x = f−1(y) and F = f−1(H). Since (X, τ)

is a GT3 1
2
-space, then there exists an L-continuous mapping g : (X, τ) → (IL,=)

such that g(x) = 1 and g(z) = 0 for all z ∈ F . That is, g(f−1(y)) = 1 and

g(f−1(s)) = 0 for all s ∈ H, which means that there exists a mapping h = (g ◦
f−1) : (Y, σ) → (IL,=) such that h(y) = 1 and h(s) = 0 for all s ∈ H. Since f

is L-open, then intτλ ◦ f−1 = f(intτλ) ≤ intf(τ)(f(λ)) = intf(τ)(λ ◦ f−1) for all

λ ∈ LX which means that f−1 : (Y, σ) → (X, τ) is L-continuous and hence the

composition h = g ◦ f−1 : (Y, σ) → (IL,=) is L-continuous and the space (Y, σ) is a

completely regular space. From (2) in Proposition 1.3 we have (Y, σ) is a GT1-space

and hence (Y, σ) is the finest GT3 1
2
-space. 2

For any class I we have the following result.

Proposition 4.2 Let ((Xi, τi))i∈I be a family of GT3 1
2
-spaces and (fi)i∈I a family

of mappings fi : Xi → X which are surjective L-open for some i ∈ I. Then the final

L-topological space (X, τ =
∧
i∈I

fi(τi)), of the family ((Xi, τi))i∈I with respect (fi)i∈I ,

also is GT3 1
2
-space.
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Proof. By a similar way as in proof of Proposition 4.1. 2

The final L-topology can be constructed by the initial L-topology as follows ([1]):

Remark 4.1 For a family ((Xi, τi))i∈I of L-topological spaces and a family (fi)i∈I

of mappings fi of sets Xi into a set X, the final L-topology τ of (τi)i∈I with respect

(fi)i∈I is the infimum of the set S of all L-topologies σ on X for which each τi, i ∈ I,

is finer than the initial L-topology of σ with respect to fi. That is, τ =
∧

σ∈S
σ. It

is clear that the L-topologies introduced in Propositions 4.1 and 4.2 coincide with

this final L-topology τ =
∧

σ∈S
σ.

GT3 1
2
-quotient spaces and GT3 1

2
-sum spaces. The GT3 1

2
-quotient spaces and

the GT3 1
2
-sum spaces, in the categorical sense, are special final GT3 1

2
-spaces ([1])

and therefore these spaces can be characterized as follows: Let (X, τ) be a GT3 1
2
-

space and f : X → Y a surjective mapping. Then the quotient space (Y, f(τ)), by

means of Proposition 4.1, is a GT3 1
2
-space. Let ((Xi, τi))i∈I be a family of GT3 1

2
-

spaces and let (X,
⊕
i∈I

τi) be the L-topological sum space of the family ((Xi, τi))i∈I .

That is,
⊕
i∈I

τi is the final of (τi)i∈I with respect to (ei)i∈I . Hence Proposition 4.2

implies that (X,
⊕
i∈I

τi) is a GT3 1
2
-space.

The last dissection can be summarized in the following corollary.

Corollary 4.1 The L-topological quotient spaces and the L-topological sum spaces

of a family of GT3 1
2
-spaces also are GT3 1

2
-spaces.

5. The relation between our completely regular spaces and

other notions of completely regular spaces

In this section is shown that our completely regular spaces are more general than

the completely regular spaces defined by Hutton in [16], by Katsaras in [20] and by

Kandil and El-Shafee in [17].
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The relation between our completely regular spaces and the com-

pletely regular spaces in sense of Hutton. In [16] Hutton had introduced

a notion of completely regular spaces using the L-unit interval (IL,=) as is denoted

in [10].

Definition 5.1 [16] An L-topological space (X, τ) is called completely regular in

sense of Hutton if for any f ∈ τ , there exists a collection (gα)α∈L in LX such that

f =
∨

α∈L
gα and there exists an L-continuous mapping g : (X, τ) → (IL,=) such that

gα(y) ≤ g(y)(1−) =
∧

t<1

g(y)(t) ≤ g(y)(0+) =
∨

s>0

g(y)(s) ≤ f(y)

for all y ∈ X.

The following proposition show that our completely regular spaces are more

general than the completely regular spaces in sense of Hutton.

Proposition 5.1 Every completely regular space in sense of Hutton is completely

regular in our sense.

Proof. Let x 6∈ F, F ∈ τ ′ hold. Then χF ′ ∈ τ and χF ′(x) = 1 and hence χF ′(x) ≥ α

for all α ∈ L and χF ′ =
∨

x∈F ′,α∈L
xα. That is, there exists for all x ∈ F ′ a family

(xα)α∈L such that χF ′ =
∨

α∈L
xα. Since (X, τ) is a completely regular space in sense

of Hutton, then there exists an L-continuous mapping g : (X, τ) → (IL,=) such

that xα(y) ≤ g(y)(1−) ≤ g(y)(0+) ≤ χF ′(y) for all y ∈ X. If y ∈ F , then we get

0 ≤ g(y)(1−) ≤ g(y)(0+) ≤ 0, which means g(y) = 0 for all y ∈ F . In case of

y = x, we get xα(x) = α ≤ g(x)(1−) ≤ g(x)(0+) ≤ 1 for all α ∈ L, and this means

g(x)(s) = 1 for all s < 1, and hence g(x) = 1. Thus, (X, τ) is a completely regular

space in our sense. 2

We have the following counter example.

Example 5.1 Let X = {x, y} with x 6= y and let τ = {0, 1, x1, x 1
2
, x1 ∨ y 1

2
, x 1

2
∨

y1, x 1
2
∨ y 1

2
}. Then, τ ′ = {0, 1, y1, x 1

2
, y 1

2
, x 1

2
∨ y 1

2
, x 1

2
∨ y1} and there is only the case

x 6∈ {y} ∈ τ ′ to be studied.
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Since the mapping f : (X, τ) → (IL,=) such that f(x) = 1 and f(y) = 0 for all

y 6= x is L-continuous, then (X, τ) is a completely regular space in our sense, and

moreover it is also GT1. Hence, (X, τ) is a GT3 1
2
-space.

Since x 1
2
∈ τ and x 1

2
=

∨
α∈L

(1
2
∧ xα), then there exists a collection (gα)α∈L =

(1
2
∧ xα)α∈L such that x 1

2
=

∨
α∈L

gα.

Now, for any L-continuous mapping f : (X, τ) → (IL,=) such that f(x) = 1 and

f(y) = 0 for all y 6= x we get that the inequality

gα(z) ≤ f(z)(1−) ≤ f(z)(0+) ≤ x 1
2
(z)

holds only when z = y but at z = x we get (1
2
∧ α) ≤ 1 ≤ 1

2
which is a contradiction

and hence (X, τ) is not a completely regular space in sense of Hutton.

The relation between our completely regular spaces and the com-

pletely regular spaces in sense of Katsaras. In the following we study the

relation between our completely regular spaces and the completely regular spaces in

sense of Katsaras ([20]).

Definition 5.2 [20] An L-topological space (X, τ) is called completely regular in

sense of Katsaras if for each open L-set µ in X and every x ∈ X with µ(x) > α,

α ∈ L0, there exists an L-continuous mapping g : (X, τ) → (IL,=) such that

g(y)(0+) ≤ µ(y) and g(y)(1−) > α for all y ∈ X.

Proposition 5.2 Every completely regular space in sense of Katsaras is completely

regular in our sense.

Proof. Let x 6∈ F, F ∈ τ ′. Then F ′ ∈ τ and this means χF ′(x) = 1 ≥ α for

all α ∈ L. From that (X, τ) is a completely regular space in sense of Katsaras, it

follows that there exists an L-continuous mapping g : (X, τ) → (IL,=) such that
∨

t>0
g(y)(t) ≤ χF ′(y) and

∧
s<1

g(x)(s) > α for all y ∈ X. If y ∈ F , then we get
∨

t>0
g(y)(t) ≤ 0, that is, g(y)(t) = 0 for all t > 0 and then g(y) = 0. At y = x, we get
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∧
s<1

g(x)(s) > α for all α ∈ L, and then g(x) = 1. Thus (X, τ) is completely regular

in our sense. 2

The following counter example introduce a completely regular space in our sense

which is not completely regular in sense of Katsaras.

Example 5.2 Taking the same example as in Example 5.1, we get (X, τ) is a GT3 1
2
-

space.

Also, for any L-continuous mapping f : (X, τ) → (IL,=) with f(x) = 1 and

f(y) = 0, we shall consider x 1
2
∈ τ with x 1

2
(x) = 1

2
> 0 (that is, there is some

α = 1
2
∈ L such that x 1

2
(x) = α > 0). Then f(z)(1−) =

∧
t<1

f(z)(t) > 1
2

only if

z = x and it is not true if z = y. Also, f(z)(0+) =
∨

s>0
f(z)(s) ≤ x 1

2
(z) is true for

z = y but it is not true for z = x. Thus (X, τ) is not completely regular in sense of

Katsaras.

The relation between the GT3 1
2
-spaces and the FT3 1

2
-spaces. In the

following we introduce the relation between the FT3 1
2
-spaces defined by Kandil and

El-Shafee in [17] and our notion of GT3 1
2
-spaces.

Definition 5.3 [17] An L-topological space (X, τ) is called an FT1-space if for all

x, y ∈ X with x 6= y we have xα q clτyβ and clτxα q yβ for all α, β ∈ L.

Definition 5.4 [17] An L-topological space (X, τ) is called completely regular in

sense of Kandil and El-Shafee if xα q f , f ∈ τ ′ implies that there exists an L-

continuous mapping g : (X, τ) → (IL,=) such that g(y)(0+) ≤ f ′(y) and g(y)(1−) ≥
xα(y) for all y ∈ X and α ∈ L. (X, τ) is called an FT3 1

2
-space if it is an FT1-space

and a completely regular space in sense of Kandil and El-Shafee.

We have shown in [2] that our GT1-spaces are more general than the FT1-spaces.

Proposition 5.3 [2] Every FT1-space is a GT1-space.
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Using Proposition 5.3, we prove in the following proposition that our GT3 1
2
-

spaces are more general than the FT3 1
2
-spaces .

Proposition 5.4 Every FT3 1
2
-space is a GT3 1

2
-space.

Proof. Let (X, τ) be an FT3 1
2
-space. Then it is GT1 from Proposition 5.3. Now,

let x 6∈ F and F ∈ τ ′. Then x ∈ F ′ and x1 q χF . Thus there exists an L-continuous

mapping g : (X, τ) → (IL,=) such that g(y)(0+) ≤ χF ′(y) and g(y)(1−) ≥ x1(y) for

all y ∈ X. At y ∈ F , we get 0 ≤ g(y)(1−) ≤ g(y)(0+) ≤ 0, that is, g(y)(s) = 0 for

all s > 0, and then g(y) = 0 for all y ∈ F . In case of y = x, we get 1 ≤ g(x)(1−) ≤
g(x)(0+) ≤ 1, and then g(x)(s) = 1 for all s < 1, that is, g(x) = 1. Hence, the

space (X, τ) is completely regular in our sense and thus it is a GT3 1
2
-space. 2

Now, we have the following counter example.

Example 5.3 Let (X, τ) be as in Example 5.1, that is, X = {x, y} and τ =

{0, 1, x1, x 1
2
, x1 ∨ y 1

2
, x 1

2
∨ y1, x 1

2
∨ y 1

2
}. Then it is a GT3 1

2
-space.

Now, for g = x 1
2
∈ τ ′, we get x 1

2
q g and g′ = x 1

2
∨ y1 ∈ LX . Hence, for any L-

continuous mapping f : (X, τ) → (IL,=) such that f(x) = 1 and f(y) = 0 for all

y 6= x we get x 1
2
(z) ≤ f(z)(1−) =

∧
t<1

f(z)(t) holds for all z ∈ X. But, g′(z) =

(x 1
2
∨ y1)(z) ≥ f(z)(0+) =

∨
s>0

f(z)(s) is true for z = y and it is not true for z = x.

Thus the space (X, τ) is not FT3 1
2
-space.
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Univ. Iasşi Sect. Ia Math. (N.S.) 26 (1980) 31 - 41.

[21] A. K. Katsaras and C. G. Petalas; On fuzzy syntopogenous structures, J. Math.

Anal. Appl., 99 (1984) 219 - 236.

[22] R. Lowen; Initial and final fuzzy topologies and fuzzy Tychonoff theorem, J. Math.

Anal. Appl., 58 (1977) 11 - 21.

[23] R. Lowen; A comparison of different compactness notions in fuzzy topological spaces,

J. Math. Anal. Appl., 64 (1978) 446 - 454.

28


